If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7p^2-38p+3=0
a = 7; b = -38; c = +3;
Δ = b2-4ac
Δ = -382-4·7·3
Δ = 1360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1360}=\sqrt{16*85}=\sqrt{16}*\sqrt{85}=4\sqrt{85}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-38)-4\sqrt{85}}{2*7}=\frac{38-4\sqrt{85}}{14} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-38)+4\sqrt{85}}{2*7}=\frac{38+4\sqrt{85}}{14} $
| 5p-126=-301 | | 7+2g=g-9-3g | | -2t=-9−t | | 4/15=x/100 | | (4w-4)^2=0 | | 2(2x-2)+x=11 | | -8u+8=-4u | | 3x+13=2x+7 | | -4.5+2m+3=4m-12+5.5 | | -4+q=5q | | 6(-5k+3)+7=-20 | | 56-3c-4=4c+20+c | | 7p−9=1+6p | | 8d−9=7d | | -t−9=-3−2t | | X+1/3+x-2/2=1 | | X=3(18x+2) | | X/3-4/x+2=6x/3x+6 | | 9x=-9x-2 | | -5+4k=5k | | (8x0.6)+R=5.0 | | 7u/3=-35 | | 10+7z=3z−10 | | 6+6p=7p | | 3x-2.5=9.5 | | 2x+4=2x+22 | | -13x-18=-96 | | 25-x-3=4(x-2) | | -6y=-12/5 | | 6a=4(a=5) | | -3+8d=9d | | 3-7x+16x-14=9-6x+9x-20 |